1. 首页 / 知识 /  正文

判断级数的敛散性方法(判断级数敛散性的技巧)

判断级数的敛散性方法(判断级数敛散性的技巧)

一些互联网上对判断级数的敛散性方法(判断级数敛散性的技巧)这个问题比较感兴趣,这里,网友小张就给大家详细解答一下。

(1)首先,考虑当项数无限增大时,一般项是否趋于零。如果不趋于零,便可判断级数发散。如果趋于零,则考虑其它方法。

(2)考察级数的部分和数列的敛散性是否容易确定,如能确定,则级数的敛散性自然也明确了。但往往部分和数列的通项就很难写出来,自然就难以判定其是否有极限了,这时就应考虑其它方法。

(3)如果级数是正项级数,可以先考虑使用达朗贝尔判别法或柯西判别法是否有效。如果无效,再考虑用比较判别法或者其他的判别法。这是因为达朗贝尔判别法与柯西判别法使用起来一般比较简便,而比较判别法适应的范围却很大。

(4)如果级数是任意项级数,应首先考虑它是否绝对收敛。当不绝对收敛时,可以看看它是不是能用莱布尼兹判别法判定其收敛性的交错级数。

常见的判别法:

关于判断级数的敛散性方法(判断级数敛散性的技巧)小张就先为大家讲解到这里了,关于这个问题想必你现在心中已有答案了吧,希望可以帮助到你。