1. 首页 / 知识 /  正文

神经网络的分类(神经网络的分类)

神经网络的分类(神经网络的分类)

一些互联网上对神经网络的分类(神经网络的分类)这个问题比较感兴趣,这里,网友小郑就给大家详细解答一下。

BP神经网络:BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

关于神经网络的分类(神经网络的分类)小郑就先为大家讲解到这里了,关于这个问题想必你现在心中已有答案了吧,希望可以帮助到你。